sábado, 25 de septiembre de 2010

MUESTRA INFINITA

El tamaño de la muestra depende de tres aspectos:
 
1) Error permitido
2) Nivel de confianza estimado
3) Carácter finito o infinito de la población.
 
Las fórmulas generales para determinar el tamaño de la muestra son las siguientes:
 
Para poblaciones infinitas (más de 100,000 habitantes)
Para poblaciones finitas (menos de 100,000 habitantes)

Nomenclatura:
 
n = Número de elementos de la muestra
N = Número de elementos de la población o universo
P/Q = Probabilidades con las que se presenta el fenómeno.
Z2 = Valor crítico correspondiente al nivel de confianza elegido; siempre se opera con valor zeta 2, luego Z = 2.
E = Margen de error permitido (determinado por el responsable del estudio).


Cuando el valor de P y de Q sean desconocidos o cuando la encuesta abarque diferentes aspectos en los que estos valores pueden ser desiguales, es conveniente tomar el caso más adecuado, es decir, aquel que necesite el máximo tamaño de la muestra, lo cual ocurre para P = Q = 50, luego, P = 50 y Q = 50.

 Ejemplo 1:

¿A cuantas personas tendríamos que estudiar para conocer la prevalencia de diabetes?


Seguridad = 95%; Precisión = 3%: Proporción esperada = asumamos que puede ser próxima al 5%; si no tuviésemos ninguna idea de dicha proporción utilizaríamos el valor p = 0,5 (50%) que maximiza el tamaño muestral:
donde:
       Za 2 = 1.962 (ya que la seguridad es del 95%)
       p = proporción esperada (en este caso 5% = 0.05)
       q = 1 – p (en este caso 1 – 0.05 = 0.95)
                           d = precisión (en este caso deseamos un 3%)


Ejemplo 2:
 
Para un trabajo de investigación de mercados en el Perú (población infinita 24’000,000 de habitantes), entre otras cosas, queremos saber cuántas personas viajarán a trabajar al extranjero, con la decisión de radicar definitivamente en el país de destino. ¿Cuál debe ser el tamaño de la muestra para un nivel de confianza de la encuesta del 95.5% y un margen posible de error de 4%?

Solución
 
Z = 2; P = 50; Q = 50; E = 4; n =? 

n= 2^2 * 50 * 50 / 4^2 = 625
Respuesta:
El tamaño necesario de la muestra para un nivel de confianza de 4% es 625 personas.


DISTRIBUCION BINOMIAL Y DISTRIBUCION NORMAL


DISTRIBUCION BINOMIAL

En estadística, la distribución binomial es una distribución de probabilidad discreta que mide el número de éxitos en una secuencia de n ensayos independientes de Bernoulli con una probabilidad fija p de ocurrencia del éxito entre los ensayos.

Un experimento de Bernoulli se caracteriza por ser dicotómico, esto es, sólo son posibles dos resultados. A uno de estos se denomina éxito y tiene una probabilidad de ocurrencia p y al otro, fracaso, con una probabilidad q = 1 - p. En la distribución binomial el anterior experimento se repite n veces, de forma independiente, y se trata de calcular la probabilidad de un determinado número de éxitos. Para n = 1, la binomial se convierte, de hecho, en una distribución de Bernoulli.

La distribucion binomial esta asociada a experimentos del siguiente tipo:
- Realizamos n veces cierto experimento en el que consideramos s´olo la posibilidad de exito o
fracaso.
- La obtencion de exito o fracaso en cada ocasion es independiente de la obtenci´on de exito o
fracaso en las dem´as ocasiones.
- La probabilidad de obtener exito o fracaso siempre es la misma en cada ocasion.



FORMULA :    

n = cantidad de ensayos o experimentos
k = cantidad de éxitos
p = probabilidad de éxito
q = probabilidad de fracasos (1-p)

Ejemplo: 1
En una jaula con 20 pericos 15 de ellos hablan ruso, si extraemos 6 pericos al azar, calcular la probabilidad de que 2 pericos hablen ruso.
  • Definir éxito: pericos que hablen ruso.
n=6
x=2
p=15/20=0.75
q=1–0.75= 0.25

Ejemplo: 2
De los alumnos del salón la cuarta parte réprobo el examen, si extraemos 8 alumnos al azar, calcular la probabilidad de que 4 de ellos hayan reprobado el examen.
  • Definir éxito: alumno reprobado
n = 8
x=4
p=0.25
q = 1 - 0.25 = 0.75

Por ejemplo vamos a construir el árbol de probabilidades de un proceso de Bernoulli de tres experimentos:





 
La distribución binomial se puede expresar de forma gráfica

Imaginemos una escuela primaria donde los alumnos llegan tarde a menudo. Cinco alumnos están en el jardín de niños. La directora lleva tiempo estudiando el problema, habiendo llegado a la conclusión de que hay una probabilidad de 0.4 de que un alumno llegue tarde y de que los alumnos lleguen independientemente uno de otro ¿Cómo trazamos una distribución binomial de probabilidad que ilustre las probabilidades de que 0,1,2,3,4 ó 5 estudiantes lleguen tarde simultáneamente? Para hacerlo necesitaremos utilizar la fórmula binomial donde :
P= 0.4
Q= 0.6
N= 5
Realicemos el cálculo de cada valor de R:
Para R= 0 obtenemos que :
P(0) = 5!/ 0!(5-0)! (0.4 )0 (0.6)5
P(0) = 0.07776
Para R= 1 obtenemos que :
P(1) = 5!/ 1!(5-1)! (0.4 )1 (0.6)4
P(1) = 0.2592
Para R=2 obtenemos que:
P(2) = 5!/ 2!(5-2)! (0.4 )2 (0.6)3
P(2) = 0.3456
Para R= 3 obtenemos que :
P(3) = 5!/ 3!(5-3)! (0.4 )3 (0.6)2
P(3) = 0.2304
Para R= 4 obtenemos que :
P(4) = 5!/ 4!(5-4)! (0.4 )4 (0.6)1
P(4) = 0.0768
Para R= 5 obtenemos que :
P(5) = 5!/ 5!(5-5)! (0.4 )5 (0.6)0
P(5) = 0.01024
Representando estos resultados en una gráfica:


Estas es un enlace para una pagina interactiva y donde podran solo los valores indicados y les dara automaticamente la respuesta:

    http://personal5.iddeo.es/ztt/Tem/t19_distribucion_binomial.htm



DISTRIBUCION NORMAL

En estadística y probabilidad se llama distribución normal, distribución de Gauss o distribución gaussiana, a una de las distribuciones de probabilidad de variable continua que con más frecuencia aparece en fenómenos reales.

Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada por la frecuencia o normalidad con la que ciertos fenómenos tienden a parecerse en su comportamiento a esta distribución.
Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.
En otras ocasiones, al considerar distribuciones binomiales, tipo B(n,p), para un mismo valor de  p  y valores de  n  cada vez mayores, se ve que sus polígonos de frecuencias se aproximan a una curva en "forma de campana".


La gráfica de su función de densidad tiene una forma acampanada y es simétrica respecto de un determinado parámetro. Esta curva se conoce como campana de Gauss.






Aqui se muestran unos ejemplos de aplicacion de la distribucion normal con los datos repectivamente tipificados:




La Curva Normal y la Probabilidad:

Los puntajes z de los ejemplos anteriores se pueden emplear para determinar la probabilidad de obtener un puntaje crudo en la distribucion, para ello es importante recordar que:

La curva normal es una distribucion de frecuencias,  en la cual la totalidad de frecuencias bajo esta es igual a 100% por ello aqui se trabaja en relacion con el 100%.

Este es un enlace para una pagina que trata el tema:





AXIOMAS Y TEOREMAS DE LA PROBABILIDAD


Para el cálculo de probabilidades hay que tomar en cuenta los Axiomas y Teoremas que a continuación se enumeran.
AXIOMAS

Los axiomas de probabilidad son las condiciones mínimas que deben verificarse para que una función definida sobre un conjunto de sucesos determine consistentemente sus probabilidades. Fueron formulados por Kolmogórov en 1933.

Axiomas de Kolmogórov:

Primer axioma:

La probabilidad de que ocurra un evento A cualquiera se encuentra entre cero y uno.


0 £ p(A) ³ 1

Ejemplo: La probabilidad de sacar par en un dado equilibrado es 0,5. P(A)=0,5

Segundo Axioma:

La probabilidad de que ocurra el espacio muestral d debe de ser 1.

                                                           p(d) = 1

Ejemplo: La probabilidad de sacar un número del 1 al 6 en un dado equilibrado es "1".

Tercer Axioma: 

Si A y B son eventos mutuamente excluyentes, entonces la,

p(AÈB) = p(A) + p(B)

Ejemplo: La probabilidad de sacar en un dado "as" o sacar "número par" es la suma de las probabilidades individuales de dichos sucesos.

Según este axioma se puede calcular la probabilidad de un suceso compuesto de varias alternativas mutuamente excluyentes sumando las probabilidades de sus componentes.

Generalizando:

Si se tienen n eventos mutuamente excluyentes o exclusivos A1, A2, A3,.....An, entonces;

                               p(A1ÈA2È.........ÈAn) = p(A1) + p(A2) + .......+ p(An)


Ejemplo:

Para el experimento aleatorio de tirar un dado, el espacio muestral es W = {1, 2, 3, 4, 5, 6}. En este espacio el conjunto de sucesos es P(W) = {Æ, {1}, {2}, ...{1,2}, {1,3}, ...{1,2,3,4,5,6}}. Para establecer una probabilidad hay que asignar un número a todos esos sucesos.
Sin embargo si se ha asignado a los sucesos elementales p({1})= p({2})= ...= p({6})= 1/6, por la propiedad ii), p.e. la probabilidad del suceso {1, 3} es p({1,3})= p({1})+ p({3})=2/6.

Nota: El suceso {1} es: "el resultado de tirar el dado es la cara 1", el suceso {1, 3} es: "el resultado de tirar el dado es la cara 1, o la 3", el suceso {1, 3, 5} es: "el resultado de tirar el dado es una cara impar".


TEOREMAS

TEOREMA 1. Si f es un evento nulo o vacío, entonces la probabilidad de que ocurra f debe ser cero.

p(f)=0
 
  
Ejemplo : La probabilidad de que un estudiante sea mujer es "1 menos la probabilidad de que no sea varón". 

DEMOSTRACIÓN:
Si sumamos a fun evento A cualquiera, como f y A son dos eventos mutuamente excluyentes, entonces p(AfÈ)=p(A) +p(f)=p(A). LQQD

TEOREMA 2. La probabilidad del complemento de A, Ac debe ser,

p(Ac)= 1 – p(A).

DEMOSTRACIÓN:
Si el espacio muestral d, se divide en dos eventos mutuamente exclusivos, A y Ac luego d=AÈAc, por tanto p(d)=p(A) + p(Ac) y como en el axioma dos se afirma que p(d)=1, por tanto, p(Ac)= 1 - p(A) .LQQD

TEOREMA 3. Si un evento A Ì B, entonces la p(A) £ p(B).

DEMOSTRACIÓN:
Si separamos el evento B en dos eventos mutuamente excluyentes, A y B \ A (B menos A), por tanto, B=AÈ(B \ A) y p(B)=p(A) +p(B \ A), luego entonces si p(B \ A)³0 entonces se cumple que p(A)£p(B). LQQD

TEOREMA 4. La p( A \ B )= p(A) – p(AÇB)

DEMOSTRACIÓN: Si A y B son  dos eventos cualquiera, entonces el evento A se puede separar en dos eventos mutuamente excluyentes, (A \ B) y AÇB, por tanto, A=(A \ B)È(AÇB), luego p(A)=p(A \ B) + p(AÇB), entonces, p(A \ B) = p(A) – p(AÇB).  LQQD

TEOREMA 5. Para dos eventos A y B, p(AÈB)=p(A) + p(B) – p(AÇB).

DEMOSTRACIÓN:
Si AÈB = (A \ B) È B, donde (A \ B) y B son eventos mutuamente excluyentes, por lo que p(A È B) = p(A \ B) + p(B) y del teorema anterior tomamos que p(A \ B) = p(A) – p(AÇB), por tanto, p(AÈB) = p(A) + p(B) – p(AÇB).  LQQD



En esta pagina podran aprender mas sobre este tema: AXIOMAS Y TEOREMAS DE LA PROBABILIDAD

http://www.dav.sceu.frba.utn.edu.ar/homovidens/Giuliano/TP%20FINAL%20MD%20giuliano/PROBABILIDAD/probabilidad/web/index.html#Inicio




TECNICAS DE CONTEO

El principio fundamental en el proceso de contar ofrece un método general para contar el numero de posibles arreglos de objetos dentro de un solo conjunto o entre carios conjuntos. Las técnicas de conteo son aquellas que son usadas para enumerar eventos difíciles de cuantificar.

Si un evento A puede ocurrir de n1 maneras y una vez que este ha ocurrido, otro evento B puede n2 maneras diferentes entonces, el número total de formas diferentes en que ambos eventos pueden ocurrir en el orden indicado, es igual a  n1 x n2.

¿De cuántas maneras pueden repartirse 3 premios a un conjunto de 10 personas, suponiendo que cada persona no puede obtener más de un premio?

Aplicando el principio fundamental del conteo, tenemos 10 personas que pueden recibir el primer
premio. Una vez que éste ha sido entregado, restan 9 personas para recibir el segundo, y
posteriormente quedarán 8 personas para el tercer premio. De ahí que el número de maneras
distintas de repartir los tres premios.

n
10 x 9 x 8 = 720


¿Cuántas placas de automóvil se pueden hacer utilizando dos letras seguidas de tres cifras? No se
admiten repeticiones.

26 x 25 x 10 x 9 x 8 = 468000

n un número entero positivo, el producto n (n-1) (n-2)...3 x 2 x 1 se llama factorial de n.
El símbolo ! se lee factorial y es el producto resultante de todos los enteros positivos de 1 a n; es decir, sea 
n
5! = 5 x 4 x 3 x 2 x 1 = 120
Por definición 0! = 1

 Si el número de posibles resultados de un experimento es pequeño, es relativamente fácil listar y contar todos los posibles resultados. Al tirar un dado, por ejemplo, hay seis posibles resultados.

Si, sin embargo, hay un gran número de posibles resultados tales como el número de niños y niñas por familias con cinco hijos, sería tedioso listar y contar todas las posibilidades. Las posibilidades serían, 5 niños, 4 niños y 1 niña, 3 niños y 2 niñas, 2 niños y 3 niñas, etc.

 Para facilitar el conteo examinaremos tres técnicas:

* La técnica de la multiplicación
* La tecnica aditiva
* La tecnica de la suma o Adicion
* La técnica de la permutación
* La técnica de la combinación.

PRINCIPIO DE LA MULTIPLICACION

Si se desea realizar una actividad que consta de r pasos, en donde el primer paso de la actividad a realizar  puede ser llevado a cabo de N1 maneras o formas, el segundo paso de N2 maneras o formas y el r-ésimo paso de Nr maneras o formas, entonces esta actividad puede ser llevada a efecto de. El principio multiplicativo implica que cada uno de los pasos de la actividad deben ser llevados a efecto, uno tras otro. Si un evento E1 puede suceder de n1 maneras diferentes, el evento E2 puede ocurrir de n2 maneras diferentes, y así sucesivamente hasta el evento Ep el cual puede ocurrir de np maneras diferentes, entonces el total de maneras distintas en que puede suceder el evento “ocurren E1 y E2…..y Ep” es igual a producto.


 N1 x N2 x ..........x  Nr  maneras o formas
Ejemplo:
Se dispone de 3 vías para viajar de C1 a C2   y de 4 vías para viajar de C2 a C1. ¿De cuántas formas se puede organizar el viaje de ida y vuelta de C1 a C2.Respuesta: (3)(4)=12


PRINCIPIO ADITIVO.

Si se desea llevar a efecto una actividad, la cuál tiene formas alternativas para ser realizada, donde la primera de esas alternativas puede ser realizada de M maneras o formas, la segunda alternativa puede realizarse de N maneras o formas ..... y la última de las alternativas puede ser realizada de W maneras o formas, entonces esa actividad puede ser llevada  a cabo de,

                        M + N + .........+ W  maneras o formas

Ejemplos:
1)      Una persona desea comprar una lavadora de ropa, para lo cuál ha pensado que puede seleccionar de entre las marcas Whirpool, Easy y General Electric, cuando acude a hacer la compra se encuentra que la lavadora de la marca W se presenta en dos tipos de carga ( 8 u 11 kilogramos), en cuatro colores diferentes y puede ser automática o semiautomática, mientras que la lavadora de la marca E, se presenta en tres tipos de carga (8, 11 o 15 kilogramos), en dos colores diferentes y puede ser automática o semiautomática y la lavadora de la marca GE, se presenta en solo un tipo de carga, que es de 11 kilogramos, dos colores diferentes y solo hay semiautomática. ¿Cuántas maneras tiene esta persona de comprar una lavadora?


Solución:

M = Número de maneras de seleccionar una lavadora Whirpool
N = Número de maneras de seleccionar una lavadora de la marca Easy
W = Número de maneras de seleccionar una lavadora de la marca General Electric


      M = 2 x 4 x 2 = 16 maneras

N = 3 x 2 x 2 = 12 maneras

W = 1 x 2 x 1 = 2 maneras

 M + N + W = 16 + 12 + 2 = 30 maneras de seleccionar una lavadora


PRINCIPIO DE LA SUMA O ADICCION

Si una primera operación puede realizarse de m maneras y una segunda operación de n maneras, entonces una operación o la otra pueden efectuarse de:
                      m+n maneras.

Ejemplo:
Una pareja que se tiene que casar, junta dinero para el enganche de su casa, en el fraccionamiento lomas de la presa le ofrecen un modelo económico ó un condominio, en el fraccionamiento Playas le ofrecen un modelo económico como modelos un residencial, un californiano y un provenzal. ¿Cuántas alternativas diferentes de vivienda le ofrecen a la pareja?

PRESA                     PLAYAS
Económico             Residencial
Condominio           Californiano
                              Provenzal
   m=2                           n=3

           2+3= 5 maneras


PRINCIPIO DE PERMUTACION:

A diferencia de la formula de la multiplicación, se la utiliza para determinar el numero de posibles arreglos cuando solo hay un solo grupo de objetos. Permutación: un arreglos o posición de r objetos seleccionados de un solo grupo de n objetos posibles. Si nos damos cuenta los arreglos a, b, c y b, a, c son permutaciones diferentes, la formula que se utiliza para contar el numero total de permutaciones distintas es:
                                               
                                              FÓRMULA: n P r = n! (n - r)

Ejemplo: ¿Como se puede designar los cuatro primeros lugares de un concurso, donde existen 15 participantes?
 Aplicando la formula de la permutación tenemos:

 
                                                  
 n P r = n! (n - r)! = 15! = 15*14*13*12 *11*10*9*8*7*6*5*4*3*2*1 (15-4)! 11*10*9*8*7*6*5*4*3*2*1 = 32760

Donde: n= número total de objetos r= número de objetos seleccionados!= factorial, producto de los números naturales entre 1 y n.
NOTA: se puede cancelar números cuando se tiene las mismas cifras en numerador y denominador. !



PRINCIPIO DE COMBINACION:

En una permutación, el orden de los objetos de cada posible resultado es diferente. Si el orden de los objetos no es importante, cada uno de estos resultados se denomina combinación. Por ejemplo, si se quiere formar un equipo de trabajo formado por 2 personas seleccionadas de un grupo de tres (A, B y C). Si en el equipo hay dos funciones diferentes, entonces si importa el orden, los resultados serán permutaciones. Por el contrario si en el equipo no hay funciones definidas, entonces no importa el orden y los resultados serán combinaciones. Los resultados en ambos casos son los siguientes:

Permutaciones: AB, AC, BA, CA, BC, CB
Combinaciones: AB, AC, BC

Combinaciones: Es el número de formas de seleccionar r objetos de un grupo de n objetos sin importar el orden.
La fórmula de combinaciones es:

                                                          n C r = n!                          r! (n – r)!

Ejemplo: En una compañía se quiere establecer un código de colores para identificar cada una de las 42 partes de un producto. Se quiere marcar con 3 colores de un total de 7 cada una de las partes, de tal suerte que cada una tenga una combinación de 3 colores diferentes. ¿Será adecuado este código de colores para identificar las 42 partes del producto?
Usando la fórmula de combinaciones:
n C r = n! = 7! = 7! = 35
 r! (n – r )!  3! (7 – 3)!  3! 4!

El tomar tres colores de 7 posibles no es suficiente para identificar las 42 partes del producto.


Estas son una pagina interactiva interesantes, que les puede ser muy util para el mejor  entendimiento de las Tecnicas de Conteo:


viernes, 24 de septiembre de 2010

DIAGRAMA DE ARBOL

Un diagrama de árbol es una representación gráfica que muestra los resultados posibles de una serie de experimentos y sus respectivas probabilidades; consta de r pasos, donde cada uno de los pasos tiene un número finito de maneras de ser llevado a cabo.

Para la construcción de un diagrama en árbol se partirá poniendo una rama para cada una de las posibilidades, acompañada de su probabilidad. En el final de cada rama parcial se constituye a su vez, un nudo del cual parten nuevas ramas, según las posibilidades del siguiente paso, salvo si el nudo representa un posible final del experimento (nudo final). Hay que tener en cuenta: que la suma de probabilidades de las ramas de cada nudo ha de dar 1.





El diagrama de árbol va de lo general a lo especifico, es decir, parte de un problema general (el “tronco”) y continua con niveles subsecuentes o causas (las “ramas”).
Los diagramas en árbol son muy útiles para "fabricar" cualquier tipo de agrupación, ya sean variaciones, permutaciones o combinaciones.

video


Ejemplo:
 
Experimento: Se lanza una moneda, si sale águila se lanza un dado y si sale sol se lanza la moneda de nuevo.


Espacio muestral
S:{A1,A2,A3,A4,A5,A6,SS,SA}
n(s)=8


Experimento: Se tienen tres pelotas en una bolsa de color blanco, azul y amarillo, si se saca una pelota pero no se regresa y se vuelve a sacar otra. ¿Cuál sera el espacio muestral?


S={RB,RA,BR,BA,AR,AB}
n(s)=6


EL DIAGRAMA DE ARBOL Y LA PROBABILIDAD:


Esta herramienta esta fundamentada en el cálculo de probabilidades condicionadas, esto quiere decir que ocurra un evento A, sabiendo que también sucede otro evento B. Un eventos dependiente se define de la siguiente forma. Se dice que un evento A es dependiente de otro B si para que ocurra A es necesario que ocurra el evento B.

Un instrumento útil dentro de la probabilidad condicional son las representaciones que nos permiten analizar la problemática de los eventos cuando estos ocurren uno después del otro. Concretamente estamos hablando de los diagramas de árbol.  Este está constituido de varias ramas, cada rama parte de un nodo que representa un evento aleatorio diferente. En el esquema que se presenta a continuación se observa que la rama principal esta constituida de evento  con diferentes posibilidades como son:  A1, A2, A3...An  la siguiente rama consta de eventos distintos, por ejemplo, B1, B2, B3...Bn  que se realizan después de ocurrir A1 , así de manera sucesiva pueden ocurrir eventos después de cualquiera de ellos. Otro ejemplo es el que se muestra, ocurren después  del evento An ocurriendo los eventos C1,C2,C3...Cn . También observamos que cada evento forma un universo para cada evento por lo que cada rama, de acuerdo con el axioma  de normalizabilidad, tendrá que ser igual a uno.


Esta pagina te ayudara a como realizar un Diagrama de Arbol:




jueves, 23 de septiembre de 2010

COMBINATORIA

¿Qué es la Combinatoria?

La Combinatoria es la parte de las Matemáticas que estudia las diversas formas de realizar agrupaciones con los elementos de un conjunto, formándolas y calculando su número.

COMBINACIONES:
Una combinación, es un arreglo de elementos en donde no nos interesa el lugar o posición que ocupan los mismos dentro del arreglo. En una combinación nos interesa formar grupos y el contenido de los mismos.

Este es un claro ejemplo donde nos explica de una forma mas clara las combinaciones:

"Mi ensalada de frutas es una combinación de manzanas, uvas y bananas": no importa en qué orden pusimos las frutas, podría ser "bananas, uvas y manzanas" o "uvas, manzanas y bananas", es la misma ensalada.
  • NO influye el orden en que se colocan.
  • Si permitimos que se repitan los elementos, podemos hacerlo hasta tantas veces como elementos tenga la agrupación.

¿Cómo se calculan?

 Combinaciones:
Para calcular el número de combinaciones se aplica la siguiente fórmula:
El termino " n ! " se denomina "factorial de n" y es la multiplicación de todos los números que van desde "n" hasta 1.
Por ejemplo: 4 ! = 4 * 3 * 2 * 1 = 24
La expresión "Cm,n" representa las combinaciones de "m" elementos, formando subgrupos de "n" elementos.

Ejemplo: C10,4 son las combinaciones de 10 elementos agrupándolos en subgrupos de 4 elementos:
Es decir, podríamos formar 210 subgrupos diferentes de 4 elementos, a partir de los 10 elementos.

Existen dos tipos: combinaciones sin repetición y combinaciones con repetición, cuyos símbolos son los siguientes:
 Combinaciones con Repeticion

  Combinaciones sin Repeticion

Las combinaciones sin repetición de n elementos tomados de p en p se definen como las distintas agrupaciones formadas con p elementos distintos, eligiéndolos de entre los n elementos de que disponemos, considerando una variación distinta a otra sólo si difieren en algún elemento, (No influye el orden de colocación de sus elementos).

Las combinaciones con repetición de n elementos tomados de p en p se definen como las distintas agrupaciones formadas con p elementos que pueden repetirse, eligiéndolos de entre los n elementos de que disponemos, considerando una variación distinta a otra sólo si difieren en algún elemento, (No influye el orden de colocación de sus elementos).


PERMUTACIONES:
Es todo arreglo de elementos en donde nos interesa el lugar o posición que ocupa cada uno de los elementos que constituyen dicho arreglo.

En pocas palabras este ejemplo nos explica con mayor claridad sobre las permutaciones:
La combinación de la cerradura es 472": ahora importa el orden. "724" no funcionaría, ni "247". Tiene que ser exactamente 4-7-2.

En matemáticas, dado un conjunto finito con todos sus elementos diferentes, llamamos permutación a cada una de las posibles ordenaciones de los elementos de dicho conjunto.
Por ejemplo, en el conjunto {1,2,3}, cada ordenación posible de sus elementos, sin repetirlos, es una permutación. Existe un total de 6 permutaciones para estos elementos: "1,2,3", "1,3,2", "2,1,3", "2,3,1", "3,1,2" y "3,2,1".

¿Cómo se calculan?

Para calcular el número de permutaciones se aplica la siguiente fórmula:
La expresión "Pm" representa las permutaciones de "m" elementos, tomando todos los elementos. Los subgrupos se diferenciaran únicamente por el orden de los elementos.
Ejemplo: P10 son las permutaciones de 10 elementos:
 

 Es decir, tendríamos 3.628.800 formas diferentes de agrupar 10 elementos.


La noción de permutación suele aparecer en dos contextos:
  • Como noción fundamental de combinatoria, centrándonos en el problema de su recuento.
  • En teoría de grupos, al definir nociones de simetría.

  • Influye el orden en que se colocan.
  • Tomamos todos los elementos de que se disponen.
  • Serán Permutaciones SIN repetición cuando todos los elementos de que disponemos son distintos.
  • Serán Permutaciones CON repetición si disponemos de elementos repetidos. (Ese es el nº de vaces que se repite elemento en cuestión).
Es por ello que también se llaman ordenaciones. Los símbolos que utilizamos son los siguientes:
Permutaciones sin repeticion

Permutaciones con repeticion

Las permutaciones sin repetición de n elementos se definen como las distintas formas de ordenar todos esos elementos distintos, por lo que la única diferencia entre ellas es el orden de colocación de sus elementos.
El número de estas permutaciones será:
Llamamos a las permutaciones con repetición de n elementos tomados de a en a, de b en b, de c en c, etc, cuando en los n elementos existen elementos repetidos (un elemento aparece a veces, otro b veces, otro c veces, etc) verificándose que a+b+c+...=n.

El número de estas permutaciones será:
VARIACIONES:
Las variaciones son aquellas formas de agrupar los elementos de un conjunto teniendo en cuenta que:
  • Influye el orden en que se colocan.
  • Si permitimos que se repitan los elementos, podemos hacerlo hasta tantas veces como elementos tenga la agrupación.
¿Cómo se calculan?

Para calcular el número de variaciones se aplica la siguiente fórmula:

La expresión "Vm,n" representa las variaciones de "m" elementos, formando subgrupos de "n" elementos. En este caso, como vimos en la lección anterior, un subgrupo se diferenciará del resto, bien por los elementos que lo forman, o bien por el orden de dichos elementos.
Ejemplo: V10,4 son las variaciones de 10 elementos agrupándolos en subgrupos de 4 elementos:

Es decir, podríamos formar 5.040 subgrupos diferentes de 4 elementos, a partir de los 10 elementos.

Existe dos tipos: variaciones sin repetición y variaciones con repetición, cuyos símbolos son los siguientes:
Variaciones sin Repeticion

Variaciones con Repeticion

Las variaciones sin repetición de n elementos tomados de p en p se definen como las distintas agrupaciones formadas con p elementos distintos, eligiéndolos de entre los n elementos de que disponemos, considerando una variación distinta a otra tanto si difieren en algún elemento como si están situados en distinto orden.

El número de variaciones que se pueden constriur se puede calcular mediante la fórmula:

Las variaciones con repetición de n elementos tomados de p en p se definen como las distintas agrupaciones formadas con p elementos que pueden repetirse, eligiéndolos de entre los n elementos de que disponemos, considerando una variación distinta a otra tanto si difieren en algún elemento como si están situados en distinto orden.

El número de variaciones que se pueden constriur se puede calcular mediante la fórmula:
El número de combinaciones que se pueden constriur se puede calcular mediante la fórmula:


 
Estas son unos links donde podran aprender de una forma interactiva sobre las Combinaciones, Permutaciones y Variaciones:

http://club.telepolis.com/ildearanda/index.html

 http://www.amschool.edu.sv/Paes/e5.htm



DIVIERTETE APRENDIENDO